New Dihydrobiflavones from the Moss Plagiomnium cuspidatum

Siegbert Anhut, Tassilo Seeger, H.-Dietmar Zinsmeister

FB 15, Botanik, Universität des Saarlandes, D-6600 Saarbrücken, Bundesrepublik Deutschland Hans Geiger

Institut für Chemie der Universität Hohenheim, D-7000 Stuttgart 70, Bundesrepublik Deutschland

Z. Naturforsch. 44c, 189-192 (1989); received November 25, 1988

Mosses, Mniaceae, Plagiomnium cuspidatum, Dihvdrobiflavone

In *Plagiomnium cuspidatum* the three new dihydrobiflavones 2,3-dihydro-5'-hydroxyamento-flavone, 2,3-dihydro-5',3'"-dihydroxyamentoflavone and 2,3-dihydro-5'-hydroxyrobustaflavone were detected.

Introduction

For a long time 5',8"-biluteolin (= 5',3'"-dihydroxyamentoflavone) from *Dicranum scoparium* [1, 2] was the only known biflavonoid in bryophytes. Meanwhile this compound and other biflavonoids have been isolated from other mosses [3–6].

Most recently we described the isolation of a luteolin-apigenin dimer, 5'-hydroxyamentoflavone, from *Plagiomnium elatum* [3]. In continuation of the chemical investigation of the moss family Mniaceae the biflavonoids of *Plagiomnium cuspidatum* were studied.

Amentoflavone 5',3'"-Dihydroxyamentoflavone (= 5',8"-Biluteolin)

(4) R = R' = H(5) R = R' = OH

Results and Discussion

From *Plagiomnium cuspidatum* three biflavonoids **2**, **3**, **7** were isolated. By ¹H NMR studies, however, it was obvious that **2** contains additionally a small amount of the further compound **8**.

,3-Dihydroamentoflavone

(1) R = R' = H

,3-Dihydro-5'-hydroxyamentoflavone

(2) R = OH, R' = H

,3-Dihydro-5',3'''-dihydroxyamentoflavone (3) R = R' = OH

Reprint requests to Prof. Dr. Zinsmeister.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0341–0382/89/0300–0189 \$ 01.30/0

Robustaflavone 5',3'"-Dihydroxyrobustaflavone (= 5',6"-Biluteolin)

(6)
$$R = R' = H$$

(7) $R = R' = OH$

(8)

2,3-Dihydro-5'-hydroxyrobustaflavone

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Compound 7 was identified by its ¹H and ¹³C NMR spectra and cochromatography with an authentic sample as the known 5′,3′″-dihydroxyrobustaflavone [5].

On the TLC plate compound **2** turned after spraying with NA from its original yellowish fluorescence to bright red (Table I). A similar colour reaction is also given by eriodictyol [7]. Together with a molecular mass of 556 this suggested an eriodictyol-apigenin dimer.

Its structure as 2,3-dihydro-5'-hydroxyamento-flavone (2) was deduced from its ¹H and ¹³C NMR spectra by comparison with the spectra of some known biflavonoids (Tables II and III). The ¹H NMR spectrum of 2 shows the typical ABX-system of the protons at C-2 and C-3 of a flavanone at 2.78, 3.18 and 5.46 ppm as well as two *meta* coupled doubletts at 5.91 and 5.92 ppm which must be attributed to the protons at C-6 and C-8 of the flavanone moiety, which must be linked *via* its B-ring to the second flavonoid. The signals of the protons at the carbon atoms C-3", 6", 2'", 3'", 5'" and 6'" are found at almost the same position and with identical multiplicity in the spectra of 2,3-dihydroamento- (1) and amen-

toflavone (4). Therefore, the second flavonoid moiety is apigenin, linked *via* C-8. The remaining two *meta* coupled doubletts at 6.87 and 7.04 ppm must be attributed to the C-2' and C-6' protons of the eriodictyol moiety which must therefore be linked as shown by the structural formula of 2. These arguments are corroborated by the ¹³C NMR spectrum (Table III) in which again the only significant differences compared with 1 are in the range of the B-ring signals of the eriodictyol moiety, which shows the chemical shift and protonation pattern which one expects. Thus the structure of 2 is proved.

The elucidation of the structure of **3** was carried out analogously. In the proton spectrum all signals except those at C-2", C-5" and C-6" have the same chemical shift and multiplicity as in the spectrum of **2**. The signals for the protons at C-2", C-5" and C-6" are identical with those of **5**. Similarly the ¹³C signals, with the exception of the signals of C-1", C-2", C-3", C-4" and C-5", are almost superimposable with those of **2**. The signals of C-1" to C-5" have the same chemical shift as in **5**. Thus the structure of 2,3-dihydro-5',3"-dihydroxyamentoflavone (**3**) is proved.

Table I. Chromatographic and UV data of compounds 2 and 3 from Plagiomnium cuspidatum.

Compound	2	3
Colour reactions		
UV (350 nm)	dark	dark
NH_3	dark	dark
"Naturstoffreagenz A" (NA)	yellowish, turning bright red	yellow, turning brick red
"Benedikt's Reagenz" (BR)	dark	dark
TLC hRf values		
Sorbent: Cellulose (Avicel, Schleicher & Schüll, F 14-	40)	
15% HOAc	4	4
40% HOAc	55	43
BAW	95	94
Sorbent: Polyamide-6 (Polygram, Macherey & Nagel)		
EtOAc-MeCOEt-HCOOH-H ₂ O (5:3:1:1)	67	53
Sorbent: Silica (KG 60F ₂₅₄ , Merck)		
CHCl ₃ -Me ₂ CO-HCOOH (9:2:1)	25	14
Toluene – Ethylformiate – HCOOH (5:4:1)	29	21
UV-data		
MeOH	277 sh/288/326	278 sh/288/339
NaOMe	289/323/397	290/321/411
AlCl ₃	263/303 sh/319/359	275 sh/292/306/375 sh/426
AlCl ₃ /HCl	286 sh/307/350/371 sh	258 sh/283/306/359/385 sh
NaOAc	289/312 sh/365 sh	290/321/370 sh
NaOAc/H ₃ BO ₃	288/327	265 sh/276/375

Table II. PMR-spectra of 2, 3, 7, 8 and related substances (DMSO-d₆, ambient temperature unless otherwise stated).

	8	6	7	5	3	2	1	4
	(373 K)	[9]		[3]	(373 K)	(373 K)	(373 K)*	[3]
H-2	~ 5.4+	-	-	_	5.44 dd (3; 12 Hz)	5.46 dd (3; 12 Hz)	5.49 dd (3; 13 Hz)	-
H-3	$3.1 - 3.2^{+}$	[6.80 s]	6.65 s	6.68 s	3.16 dd (12; 17 Hz)	3.18 dd (12; 17 Hz)	3.19 dd (13; 17 Hz)	6.74 s
H-3	obscured	_	_	=	2.79 dd (3; 17 Hz)	2.78 dd (3; 17 Hz)	2.74 dd (3; 17 Hz)	-
H-6	~ 5.9	6.23 d (2 Hz)	6.20 d (2 Hz)	6.21 d (2 Hz)	5.89 d (2 Hz)	5.91 d (2 Hz)	5.89 **	6.22 d (2 Hz)
H-8	~ 5.9	6.52 d (2 Hz)	6.45 d (2 Hz)	6.45 d (2 Hz)	5.92 d (2 Hz)	5.92 d (2 Hz)	5.89	6.50 d (2 Hz)
H2'	6.73 d (2 Hz)	7.87 d (2 Hz)	7.35 d (2 Hz)	7.51 d (2 Hz)	6.84 d (2 Hz)	6.87 d (2 Hz)	7.37 d (2 Hz)	8.07 d (2 Hz)
H-5'	_	7.09 d (9 Hz)	-	-	-	-	7.02 d (8 Hz)	7.19 d (9 Hz)
H-6'	6.95 d (2 Hz)	7.94 d (2; 9 Hz)	7.40 d (2 Hz)	7.52 d (2 Hz)	7.12 d (2 Hz)	7.04 d (2 Hz)	7.39 dd (2; 8 Hz)	7.99 dd (2; 9 H
H-3"	6.68 s	[6.80 s]	6.72 s	6.72 s	6.53 s	6.65 s	6.65 s	6.81 s
H-6"	_	_	-	6.41 s	6.38 s	6.40 s	6.37 s	6.45 s
H-8"	6.63 s	6.68 s	6.59 s	-	_	_	_	-
H-2'"	7.89 d (9 Hz)	7.97 d (9 Hz)	7.45 d (2 Hz)	7.09 d (2 Hz)	7.02 d (2 Hz)	7.56 d (9 Hz)	7.54 d (9 Hz)	7.57 d (9 Hz)
H-3'"	6.97 d (9 Hz)	7.03 d (9 Hz)	-	-	-	6.81 d (9 Hz)	6.78 d (9 Hz)	6.77 d (9 Hz)
H-5'"	6.97 d (9 Hz)	7.03 d (9 Hz)	6.92 d (8 Hz)	6.70 d (8 Hz)	6.77 d (8 Hz)	6.81 d (9 Hz)	6.78 d (9 Hz)	6.77 d (9 Hz)
H-6'"	7.89 d (9 Hz)	7.97 d (9 Hz)	7.46 dd (2; 8 Hz	7.07 dd (2; 8 Hz	2) 7.03 dd (2; 8 Hz)	7.56 d (9 Hz)	7.54 d (9 Hz)	7.57 d (9 Hz)

^{*} Isolated from Cycas revoluta [8].

Table III. ¹³C NMR spectra of compounds **2**, **3** and related substances (**1**, **4**, **5**). (DMSO-d₆, ambient temperature unless otherwise stated.)

Assign- ment	5	3 (373 K)	2 (373 K)	1 [10]	4 [10]
C-2	163.9	78.2	78.2	78.8	164.1
C-3	102.9	42.1	42.1	42.5	103.2
C-4	181.9	195.4	195.3	196.5	181.9
C-5	161.4	163.1	163.1	163.6	161.6
C-6	98.7	95.5	95.5	96.0	98.8
C-7	164.0	166.2	166.2	166.8	163.9
C-8	93.8	94.7	94.7	95.2	94.2
C-9	157.3	162.6	162.6	163.2	157.6
C-10	103.6	101.6	101.6	101.9	104.0
C-1'	120.6	128.5	128.6	128.7	120.3
C-2'	122.2	120.8	120.9	127.8	127.9
C-3'	120.0	119.2	119.2	119.2	121.7
C-4'	148.2	145.1	145.1	156.2	159.6
C-5'	145.5	143.9	143.9	115.9	116.4
C-6'	112.1	112.8	112.8	131.6	131.6
C-2"	164.0	163.6	163.4	163.7	164.3
C-3"	102.5	102.1	102.1	102.6	102.8
C-4"	181.5	181.5	181.6	182.2	182.2
C-5"	160.4	160.0	160.5	160.4	160.8
C-6"	98.6	98.4	98.4	98.8	99.1
C-7"	161.7	161.5	161.4	162.2	161.9
C-8"	104.0	104.6	104.5	104.9	104.1
C-9"	154.5	154.2	154.2	154.5	154.7
C-10"	103.6	103.5	103.5	103.7	104.0
C-1'"	121.8	121.8	121.3	121.5	121.4
C-2'"	113.7	113.5	127.7	128.4	128.3
C-3'"	145.8	145.2	115.4	115.9	116.0
C-4'"	149.4	149.1	160.0	161.2	161.1
C-5'"	115.5	115.4	115.4	115.9	116.0
C-6′″	118.6	118.4	127.7	128.4	128.3

Assignments of carbons having almost the same chemical shift may be reserved.

As mentioned above the ¹H NMR-spectrum of 2 revealed the presence of traces of another dihydrobiflavone (see Experimental) in our sample. Its proton signals, as far as they are not obscured by the signals of the main compound, show the chemical shift and multiplicity, which are expected for a 2,3-dihydro-5'-hydroxyrobustaflavone (8) (Table II). The signals for the protons at C-3", C-8", C-2"", C-3"", C-5"" and C-6'" occur at almost the same position as the corresponding signals of robustaflavone (6). The remaining clearly separated signals – two *meta* coupled doubletts – can be assigned to the protons at C-2' and C-6' of 8. Although the remaining signals are partly concealed there is no evidence against the proposed structure of 8.

Experimental

Plant Material

Gametophytic material of Plagiomnium cuspidatum (Hedw.) T. Kop., collected from two different localities, was thoroughly cleaned and air-dried:

- 1. Laukenmühle, Hessen, W. Germany: 69 g.
- 2. Waldfriedhof Kaiserslautern, Rheinland-Pfalz, W. Germany: 431 g.

Voucher specimens are deposited in the Herbarium of Fachrichtung Botanik, Universität des Saarlandes (Indexed in Index Herbariorum, "SAAR").

^{**} Due to identical chemical shift, the signals of these two protons appear as a singulett.

⁺ Partly obscured.

Extraction and isolation

Since the flavonoid patterns of samples from both localities were identical, as determined by 2D-TLC, they were combined. The total air-dried material was ground and defatted with CHCl3. The flavonoids were then extracted by repeated treatment with EtOH/H₂O (8:2). The combined extracts were evaporated. The residue was partitioned between EtOAc/H₂O. The EtOAc phases were reduced in vacuo and dissolved in EtOAc-MeCOEt-HOAc-H₂O (5:3:1:1) and chromatographed on a polyamide column with the above solvent as eluent. The different portions of the eluate were pooled into three fractions (A, B, C). Fraction A contained the dihydrobiflavones, 2, 3 and 8, fraction B compound 7, and fraction C a small amount of 7 and some minor biflavonoids. By repeated CC with Sephadex LH-20 and Me₂CO/MeOH/H₂O (2:1:1) and polyamide with the above mentioned eluent from fractions A and B were obtained: 85 mg 2 which contained traces of **8**, 35 mg **3** and 20 mg **7**. Prior to spectroscopy the compounds were freed from high molecular material by CC on Sephadex.

TLC see Table I.

UV spectroscopy according to [11].

¹H NMR spectroscopy: Bruker (AM 400), 400 MHz, DMSO-d₆.

¹³C NMR spectroscopy: Bruker (AM 400), 100 MHz, DMSO-d₆.

Mass spectra were recorded by FAB-technique (negative mode) on a Finnigan MAT 90 in a glycerol matrix with 4–6 keV Xenon atoms.

Acknowledgements

The help of Dr. R. Graf and Mr. M. Schommer, Universität des Saarlandes, in running the FAB-MS spectra and the NMR spectra, respectively, is gratefully acknowledged.

H. Geiger thanks the Fonds der Chemischen Industrie for financial support.

- [1] G. Lindberg, B.-G. Österdahl, and E. Nilsson, Chemica Scripta 5, 140–144 (1974).
- [2] B.-G. Österdahl, Acta Chem. Scand. **B** 37, 69-78 (1983).
- [3] H. Geiger, S. Anhut, and H. D. Zinsmeister, Z. Naturforsch. 43c, 1-4 (1988).
- [4] K. R. Markham, Ø. M. Andersen, and E. S. Viotto, Phytochemistry 27, 6, 1745-1749 (1988).
- [5] R. Becker, R. Mues, H. D. Zinsmeister, F. Herzog, and H. Geiger, Z. Naturforsch. 41c, 507-510 (1986).
- [6] H. Geiger, W. Stein, R. Mues, and H.-D. Zinsmeister, Z. Naturforsch. 42c, 863-867 (1987).
- [7] E. Wollenweber, Z. Naturforsch. 36c, 604-606 (1981).
- [8] H. Geiger and W. De Groot Pfleiderer, Phytochemistry 10, 1936–1938 (1971).
- [9] B. Voirin and M. Jay, Phytochemistry 16, 2043–2044 (1977).
- [10] K. R. Markham, C. Sheppard, and H. Geiger, Phytochemistry 26, 3335-3337 (1987).
- [11] T. J. Mabry, K. R. Markham, and M. B. Thomas, The systematic identification of Flavonoids, Springer, Berlin 1970.